skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leao, Bruno Salomao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Defining the similarity between chemical entities is an essential task in polymer informatics, enabling ranking, clustering, and classification. Despite its importance, the pairwise chemical similarity of polymers remains an open problem. Here, a similarity function for polymers with well-defined backbones is designed based on polymers’ stochastic graph representations generated from canonical BigSMILES, a structurally based line notation for describing macromolecules. The stochastic graph representations are separated into three parts: repeat units, end groups, and polymer topology. The earth mover’s distance is utilized to calculate the similarity of the repeat units and end groups, while the graph edit distance is used to calculate the similarity of the topology. These three values can be linearly or nonlinearly combined to yield an overall pairwise chemical similarity score for polymers that is largely consistent with the chemical intuition of expert users and is adjustable based on the relative importance of different chemical features for a given similarity problem. This method gives a reliable solution to quantitatively calculate the pairwise chemical similarity score for polymers and represents a vital step toward building search engines and quantitative design tools for polymer data. 
    more » « less